摘要

目的 航空发动机孔探图像的损伤检测关系到航空发动机是否要非例行更换,直接影响飞机的飞行安全和利用率。现有的孔探图像损伤检测方法直接使用目标检测方法训练一个多类别损伤检测器,使用相同的参数在不同位置检测损伤。由于没有考虑同类型损伤在发动机不同区域发生概率的不同,导致现有方法的检测准确率较低。为了提高损伤检测的准确率,提出了一种自适应参数的航空发动机孔探图像损伤检测方法。方法 通过识别孔探图像所属的发动机区域,针对不同区域孔探图像设置不同的参数用于检测发动机损伤。同时为了避免单检测器上不同类型损伤之间相互干扰,采用独立检测器检测单一类型的损伤,并对误检率高的损伤进行真假识别。通过合并检测到的不同类型的损伤,得到最终的损伤检测结果。此外,为了改进水平的矩形检测框,使用分割结果产生旋转的检测框,有效地减少了框中的背景区域。结果 在13个航空发动机区域的2 654幅孔探图像上针对烧蚀、裂缝、材料丢失、涂层脱落、刻痕和凹坑等6种典型的发动机损伤进行检测实验。提出的损伤检测方法在准确率和召回率两方面分别达到了90.4%和90.7%,相较于目标检测方法 YOLOv5(you only look once version 5)的准确率和召回率高24.8%和25.1%。实验结果表明,本文方法在航空发动机损伤检测方面优于其他对比方法。结论 本文所提出的自适应参数的航空发动机损伤检测模型通过识别发动机图像所属的部位,针对同种类型的损伤检测器设定不同的参数,有效地提高了检测器的检测性能。同时,针对容易误检的裂缝、刻痕和凹坑增加了真假损伤判别器,有效地减少了误检的情况。