摘要
针对低成本的惯性导航系统精度不足从而导致姿态解算容易发散的问题,提出一种改进Allan方差的自适应卡尔曼滤波算法。在滤波之前,先用四元数改进型PID的互补滤波来融合数据,以抑制数据的波动,同时也加快了运算速率。在对噪声进行分析时,运用Allan方差的分析方法,并组合高斯牛顿优化算法,提高了姿态解算的精度,能够对姿态角实现短时间内的稳定以及精确的跟踪。实验结果表明,使用自适应Sage-Husa算法处理两种噪声时比标准卡尔曼滤波算法的精度提高了30%左右。使用改进的Allan方差自适应滤波比使用自适应Sage-Husa滤波算法精度提高了40%左右,该算法也可用于精确单点定位与伪距定位。
- 单位