摘要
有效的推荐算法可以最大限度地发掘商品的价值.通过研究用户的偏好,分析了从海量商品信息中为用户推荐感兴趣内容的方法.目前大多数推荐系统向用户推荐的是较为流行的商品,而忽略了那些当下不"热门",却有着巨大潜力的商品.以发掘小众中的大众商品为目的,提出了一种基于反向最远邻(Reverse Furthest Neighbor, RFN)查询的商品推荐算法:基于专家用户的信任协同过滤算法,替代传统用户相似匹配的协同过滤推荐算法;利用幂律对商品进行范围缩减,优化系统筛选的效率,实现了对有潜在价值商品的推荐,使小众商品属性的分布得到更深层次的挖掘.实验结果表明本文推荐算法输出结果质量较高,适用于解决部分"长尾问题".
- 单位