摘要
针对风电机组齿轮箱油温数值的非线性与相关性,为实现油温的准确预测,提出一种基于快速傅里叶变换(Fast Fourier Transform,FFT)的深度神经网络(Deep Neural Network,DNN)的预测方法。首先,对油温数据进行时间序列特性分析,选择时间窗口对信息进行排列,然后对信息进行FFT并提取其高频幅特征,并把这些特征输入DNN模型中进行训练,最后对输出的结果进行评价。采用实测数据对该方法进行验证,并选用常见模型进行对比,结果验证了该方法的有效性。该方法可以在齿轮箱运行状态异常前预警,降低设备功能性的故障,减少风电机组故障停机的损失,具有实用价值。
-
单位国网安徽省电力有限公司