摘要

针对当前建筑群组相似模式检索中空间域和谱域相似度量方法的模型泛化能力较弱,且空间信息利用不足的问题,本文提出了一种基于变分图卷积自编码器的相似检索模型。首先,利用最小生成树构建建筑群组图数据,并将建筑物描述特征嵌入图节点中,实现建筑群组模式的定量化表达;其次,在变分图卷积自编码器重参数化模块中,加入四维超混沌系统与高斯分布融合生成的混合噪声,通过增加采样的随机性来提高模型的泛化能力;然后利用图卷积和池化代替全连接层以保留更多的空间信息,并对低维特征编码进行处理,获得建筑群组的模式特征编码;最后,利用余弦距离来获得待检索建筑群组与模式编码库中建筑群组之间的相似度,从而实现建筑群组模式的相似检索。实验结果表明,该模型能够有效提取建筑群组的模式特征,通过无监督学习实现端到端的建筑群组相似模式检索,为建筑群组模式的自动分类与相似检索提供了新的思路和方法。