基于孪生网络的小样本滚动轴承故障诊断研究

作者:徐卓飞*; 李旭东; 张婵婵; 侯和平; 张武
来源:仪器仪表学报, 2022, 43(10): 241-251.
DOI:10.19650/j.cnki.cjsi.J2209762

摘要

针对小样本和强噪声条件下的滚动轴承故障诊断问题,提出了一种孪生网络模型:首先,对于滚动轴承故障信号进行连续小波变换以获得时频图像,引入卷积神经网络模型以实现故障图像模式识别;进而,对故障样本进行交叉配对以重新组合,实现了少量故障样本的大幅扩容;同时,针对扩容后样本对数据构建了包含两个子模型的孪生网络模型;最后,为了实现强噪声、小样本条件下滚动轴承故障诊断,设计了孪生网络末端专用分类器,在加噪声数据库和机械故障实验中对方法进行测试,分别达到了96.25%和97.08%正确率。所提出模型能够依靠少量样本完成训练并实现轴承故障准确诊断,所需每类样本的数量可减少至20个,与经典卷积神经网络模型相比具有明显优势。

全文