摘要

在钢铁冷连轧生产过程中,轧制力预测结果直接影响带材的轧制精度和产品质量。为进一步提高轧制力预测精度,同时实现模型的在线更新,避免漂移问题,提出了基于循环自编码网络的轧制力模型。首先,使用循环自编码网络对处理好的输入数据进行特征提取,为了加速网络训练,加入了小批量训练方法,然后使用高斯过程回归模型对提取到的特征进行回归拟合。仿真结果表明,该模型预测精度可达3%以内,能够实现轧制力的高精度在线预测。