摘要
本发明涉及一种基于优化支持向量机的三电平逆变器开路故障诊断方法,该方法包括以下顺序的步骤:(1)故障特征提取,样本分配;(2)核Fisher降维,优化核函数参数;(3)确定支持向量所属的区间;(4)KNN参考点提取;(5)测试样本分配;(6)测试样本分类。本发明采用固有模态分解和奇异值分解进行特征提取能够更好地提取时变非线性信号特征;利用核Fisher算法提取支持向量作为训练样本,能够有效提高支持向量机的训练速度;利用KNN算法对分类超平面附近的测试样本分类,能够提高分类超平面附近测试样本的分类准确度;利用核Fisher算法构建的SVM-KNN分类器能够在较少的测试时间内以更高的精度正确分类三电平逆变器开路故障。
- 单位