轻量化网络可解决深度神经网络参数较多、计算量较高、难以部署在计算能力有限的边缘设备上等问题.针对轻量化网络中常用的分组卷积的分组结构问题,文中提出基于神经网络结构搜索的轻量化网络.将不同分组的卷积单元作为搜索空间,使用神经网络结构搜索,得到网络的分组结构和整体架构.同时为了兼顾准确率与计算量,提出循环退火搜索策略,用于解决神经网络结构搜索的多目标优化问题.在数据集上的实验表明,文中网络识别准确率较高,时间复杂度和空间复杂度较低.