差分隐私综述

作者:李效光*; 李晖; 李凤华; 朱辉
来源:信息安全学报, 2018, 3(05): 92-104.
DOI:10.19363/J.cnki.cn10-1380/tn.2018.09.08

摘要

差分隐私是2006年由DWORK提出的一种新型的隐私保护机制,它主要针对隐私保护中,如何在分享数据时定义隐私,以及如何在保证可用性的数据发布时,提供隐私保护的问题,这两个问题提出了一个隐私保护的数学模型。由于差分隐私对于隐私的定义不依赖于攻击者的背景知识,所以被作为一种新型的隐私保护模型广泛地应用于数据挖掘,机器学习等各个领域。本文介绍了差分隐私的基础理论和目前的研究进展,以及一些已有的差分隐私保护理论和技术,最后对未来的工作和研究热点进行了展望。

全文