摘要
基于CNN的小样本目标检测网络在两阶段元训练注入少量新类图像时,不混合基类进行训练已成为一种趋势,这样能高效地向模型注入新类。而在这种增量式训练方式下,由于输入的新类别样本量少,模型由于泛化性能不足,易错检新注入的类别数据为模型训练过的种类。基于此,在CenterNet框架上设计了一种新的小样本目标检测器,能快速高效地进行检测。检测器引入了一个重要组件:对图像做有效增强处理后提取类表征信息的注意力类编码器,能有效地提升网络对新类的编码性能,从而增强模型对新类的泛化能力。实验结果表明,方法在一些场景下优于近期比较流行的小样本目标检测框架。
- 单位