摘要

通过比较5种不同光谱预处理方法(MSC、SNV、VN、一阶导数、二阶导数)提取胡杨叶片近红外光谱信息,分别采用遗传算法(GA)和连续投影算法(SPA)筛选特征波段,建立并比较偏最小二乘回归(PLS)模型对水分含量的预测效果,研究了胡杨叶片水分含量与叶片光谱信息的关系。结果表明,基于5种预处理方法使用SPA-PLS回归模型预测的相关系数R分别为0.764 4、0.869 79、0.806 01、0.779 93、0.816 8;预测均方根误差(RMSEP)分别为0.017 87、0.014 491、0.018 547、0.020 228、0.018 089;所选取的特征波段个数分别为11、20、24、18、18,较GA-PLS选取的特征波段数少,且预测效果普遍优于GA-PLS,其中基于SNV的预测结果最好。研究表明,基于近红外光谱数据,SPA算法相比于GA算法具有更好的选择特征波长能力,并且SPA-PLS算法的回归预测结果普遍优于GA-PLS,采用SNV-SPA-PLS方法可实现胡杨叶片水分含量的快速检测。