摘要
船舶主机功率是预测航行油耗、评估船舶废气排放中的一项重要数据。然而,未知的船舶主机功率数据对基于大数据的船舶油耗及排放预测产生了障碍。为了解决这一问题,本文提出基于高斯混合模型(GMM)和深度神经网络(DNN)的大型船舶主机功率预测方法。首先对船舶特征进行相关性分析,选择与主机功率相关系数较大的船舶特征作为GMM-DNN混合模型的输入,然后使用GMM对船舶特征进行聚类,将聚类结果作为标签和船舶特征一起作为DNN的输入,最后使用Adam-Dropout优化DNN,并用DNN对船舶功率进行预测。为了探究方法的有效性,本文比较了多元线性回归分析、非线性回归、DNN、GMM-DNN在船舶主机功率上的预测效果。实验表明,GMM-DNN模型在船舶主机功率预测上表现最好,其平均绝对误差MAPE为14.57%,比多元线性回归、非线性回归和DNN分别低28.27%、23.36%和1.24%。
- 单位