针对竹片自动检测领域中竹片正反面识别率低的问题,提出基于BP神经网络的竹片正反面识别算法,构建并训练一个三层的3输入1输出的BP神经网络模型;提取竹片的2个纹理特征和灰度值特征值,输入经过训练的神经网络模型,计算预测的识别结果。实验结果表明:基于BP神经网络的竹片正反面识别算法在最小风险的原则下的反面识别率为97%;正面的识别率为98%;稳定性明显高于单一特征识别的稳定性。