结合共享近邻和共享逆近邻的密度峰聚类

作者:周欢欢; 张征*; 张琦
来源:西华师范大学学报(自然科学版), 2022, 43(01): 108-115.
DOI:10.16246/j.issn.1673-5072.2022.01.016

摘要

密度峰聚类算法是一种基于密度的新型高效聚类算法,但是存在截断距离难以确定、局部密度定义过于简单和聚类分配策略容错能力差等问题。针对上述问题,提出了一种结合共享近邻和共享逆近邻的密度峰聚类算法。首先,该算法利用样本的共享近邻和共享逆近邻构造新的相似度计算方法;然后,重新定义了局部密度计算公式,避免了截断距离的选取问题;最后,提出了新的分配策略。实验中,在人工数据集和UCI数据集上进行测试,同时与SNNDPC、DPC、FKNN-DPC、AP、OPTICS、DBSCAN和K-means算法进行比较。实验结果表明:密度峰聚类改进算法的聚类结果整体优于其他算法,同时克服了DPC算法中分配策略可能存在的链式错误分配问题。