土壤碱解氮含量可见/近红外光谱预测模型优化

作者:汪六三; 鲁翠萍; 王儒敬; 黄伟; 郭红燕; 汪玉冰; 林志丹; 王键; 蒋庆; 宋良图
来源:发光学报, 2018, 39(07): 1016-1023.

摘要

可见/近红外光谱技术是土壤成分检测的有效工具。波长筛选对可见/近红外模型土壤属性的预测精度有重要影响。以宁夏吴忠地区75个水稻土样为研究对象,利用可见/近红外光谱技术采集土壤样品光谱,采用SPXY(Sample set partitioning based on joint X-Y distance)方法选取了校正集和预测集样本,比较了分别采用Savitzky Golay平滑(SG smoothing)、多元散射校正(Multiple scatter correction,MSC)、标准正态变量变换(Standard normal variate,SNV)3种预处理方法对光谱数据处理后建立土壤碱解氮偏最小二乘法模型和原始光谱数据建模的效果。在此基础上,分别采用遗传算法(Genetic gorithms,GA)、连续投影算法(Successive projections algorithm,SPA)、竞争性自适应重加权算法(Competitive adaptive reweighted Sampling,CARS)、随机蛙跳(Random frog,RF)进行波长筛选,最后应用偏最小二乘法建立基于不同波长筛选方法的土壤碱解氮含量预测模型。研究表明,由于仪器性能稳定,样品的颗粒度比较小和均匀,本次实验原始光谱数据建模效果最好;各种波长筛选方法均可有效减少参与建模的波长数,且连续投影算法优于全谱建模,所选波长数仅为全谱波长数的1%,其预测决定系数(R2)、预测均方根误差和相对分析误差值分别为0.726,3.616,1.906。这表明连续投影算法可以有效筛选水稻土碱解氮敏感波段,为土壤碱解氮传感器开发提供技术支持。

  • 单位
    中国科学院,合肥智能机械研究所; 中国科学院合肥智能机械研究所; 电子工程学院