摘要
针对三波段红外火焰探测器中可能出现的单一非火焰波段通道的数据丢失、失真、饱和3种对火焰特征数据的强干扰情况,本文提出了一种改进型T-S(Takagi-Sugeno,高木-关野)模型RBF(Radial Basis Function,径向基函数)神经网络的火焰识别的鲁棒性融合算法。该算法通过聚类算法确定模型需要的模糊规则数,在模糊后件多项式中加入特征分量隶属度生成节点输出,同时定义了加权模糊节点激活度和特征表征系数代替了原先模型的马氏距离(模糊规则适用度)。通过设计三波段火焰探测器并进行了常规及鲁棒性实验,实验数据证实,改进型模型在隐含层所需节点数、收敛速度、精度、泛化能力、鲁棒性上较传统T-S模型的RBF神经网络模型、GA(Genetic Algorithm,遗传算法)-BP(Back Propagation,反向传播)模型都有明显的提升。
- 单位