摘要

核正则化排序算法是目前机器学习理论领域讨论的热点问题,而成对学习算法是排序算法的推广.文章给出一种基于拟凸损失的核正则化成对学习算法,利用拟凸分析理论对该算法进行误差分析,给出算法的收敛速度.分析结果表明,算法的样本误差与损失函数中的参数选择有关.数值实验结果显示,与基于最小二乘损失的排序算法相比较,该算法有更稳健的学习性能.