摘要

图像集分类算法通过充分利用图像的集合信息来提高识别性能,得到了广泛的关注。但是现有的图像集分类算法存在如下问题:1)需要样本满足某种概率统计分布;2)忽略了图库集类与类之间的互斥性;3)对非高斯噪声不具备鲁棒性。为了解决上述问题,提出了一种基于熵自加权联合正则化最近点的图像集分类算法(SRNPC)。首先在测试集中寻找唯一的全局联合正则化最近点,同时最小化该点与每个图库集中正则化最近点之间的距离;然后,为了增强类之间的判别力以及对非高斯噪声的鲁棒性,引入一种基于熵尺度的自加权策略来迭代更新测试集与各个图库集合之间的熵加权权重,得到的权重能够直接反映测试集与每个图库集之间相关性的高低;最后,利用测试集和每个图库集之间的最小残差值获得分类结果。通过在UCSD/Honda、CMU Mobo和YouTube这三个公开数据集上与当前主流的算法进行的对比实验结果表明,所提出的算法具有更高的分类精度和更强的鲁棒性。