摘要
毫米波雷达具有小型化、低成本等特点,可全天候、全天时工作,在高级辅助驾驶系统中发挥着重要作用。基于多芯片级联方案的多发多收(multiple-input multiple-out, MIMO)技术可有效提高毫米波雷达的角度分辨率,使得毫米波雷达点云成像成为可能。针对毫米波雷达图像点云稀疏、噪点多等问题,本文提出了一种基于最近迭代点的毫米波雷达多帧融合和自适应邻域半径的DBSCAN算法。首先,利用MIMO毫米波雷达技术获得多帧观测场景目标点云图像。其次,利用辅助信息得到点云匹配的初值,通过最近迭代点算法估计平移旋转矩阵进行精确匹配,实现多帧数据融合以改善图像点云稀疏问题。然后,设计自适应阈值的DBSCAN算法去除噪声,获得目标的点簇信息,再对聚类后的点簇目标求取最小外接矩形,结合目标散射强度,实现对车辆和围栏等不同类型目标区分。最后,利用外场(典型停车场场景)测试数据,对本文所提算法的有效性进行了验证。
-
单位毫米波国家重点实验室; 东南大学