摘要
本发明公开了一种基于LeapMotion的动态手势识别方法,包括如下步骤:用Leap Motion传感器采集动态手势的手部关键点的三维位置信息;通过计算某一时刻手部关键点的速率,结合阈值法判断手势的起始点和结束点,并将位于起始点和结束点之间的手势数据流作为动态手势的原始数据;通过特征预处理和SVD奇异值分解,实现手势数据中冗余信息的去除,得到手势特征矩阵;利用Kmeans对手势特征矩阵进行重编码,并为每一种手势训练一个HMM模型,实现手势分类。本发明基于Leap Motion,利用阈值法实现准确、高效的手势数据分割;通过SVD实现原始数据的降维,提高HMM训练的效率,实现准确、实时的手势识别。
-
单位华南理工大学; 淮北幻境智能科技有限公司