摘要
高光谱技术快速、无损、精确探测矿物,能够清楚的反映矿物化学成分的改变。石榴子石在热红外波段具有诊断性的三峰式特征。反射峰波长与化学成分关系密切,所以可以依据石榴子石在热红外波段的光谱特征开展其亚类分类研究。钙铬榴石和锰铝榴石反射峰位置易于与其他亚类区分,而铁铝榴石和镁铝榴石、钙铁榴石和钙铝榴石的反射峰位置有较大重叠区域,无法直接判别,因此亟需一种基于热红外光谱的快速、准确识别石榴子石亚类的分类方法。基于热红外光谱库中85个不同类型的石榴子石样本数据获取其3个反射峰位置及波长差值信息,利用非线性BP神经网络、聚类分析以及多元线性判别分析3种方法开展石榴子石亚类识别实验,并运用精确率、召回率和F1值进行分类精度评价。结果显示:BP神经网络算法分类的精确率、召回率和F1值均能达到100%,铁铝榴石和镁铝榴石、钙铁榴石和钙铝榴石得到很好地区分;聚类分析和多元线性判别分析分类的精确率、召回率和F1值分别为86.1%、 80%和79.2%, 84.2%、 80%和79.5%,这两种方法对反射峰重叠的铁铝榴石和镁铝榴石、钙铁榴石和钙铝榴石分类效果不好,因此BP神经网络更适合石榴子石亚类识别。本研究利用BP神经网络强大的非线性自动映射能力,找到了石榴子石热红外谱段反射峰位置与亚类类型之间复杂的映射关系,证明了BP神经网络方法与热红外光谱特征结合使用的可行性与优越性,为石榴子石亚类识别提供了快速有效的技术支撑,同时为其他矿物的快速有效识别提供了良好的技术启示。
- 单位