深度神经网络属于机器学习领域的一项技术,实现了对高复杂性数据的建模.为了解决深度神经网络的过拟合问题,提高模型的鲁棒性,引入了正则化处理方法和指数加权移动平均算法,通过在损失函数中加入描述模型复杂化程度的因素,抑制模型在训练过程中可能出现的异常值,增强深度神经网络模型在未知数据上的健壮性.仿真实验结果显示优化方法有效可行.