摘要
柔性作业车间调度的求解过程中,存在调度规模大、求解复杂程度高的问题,为此,在传统蚁狮算法的基础上,提出了一种基于改进蚁狮算法的柔性作业车间调度方法。首先,建立了以最小最大完工时间为优化目标的柔性作业车间调度模型,并使用双层实数编码规则,对其工序和机器进行了编码;其次,设计了一种基于混沌映射与竞标赛选择的混合策略,随机生成了初始种群;然后,引用了遗传算法的交叉变异策略对工序及机器进行了选择;最后,为了验证改进蚁狮算法在柔性作业车间调度上的有效性,笔者利用Brandimarte基准算例与其他智能算法,进行了仿真对比实验。研究结果表明:采用混合策略初始化生成初始种群以及引入交叉变异策略的蚁狮算法,其初始化种群质量好,算法的收敛速度较快,逃避局部最优能力较强,加工机器的利用率较高;利用该算法求解Mk01算例中获得最大完工时间最小值为40,解的质量均高于采用其他算法得到的解。
-
单位昆明理工大学; 自动化学院