摘要
随着居民生活水平的提高和对健康饮食结构的重视,羊肉作为一种高蛋白且低脂肪和胆固醇的畜肉,需求量逐年上涨。根据国家统计局统计,2012年—2019年我国畜肉产业中羊肉产量占比从6.27%上升到9.02%。研究提出了一种基于二次迭代Monte Carlo(MC)算法剔除异常样本的羊肉硬度定量检测PLSR模型。采用GaiaSorter高光谱分选仪的Image-λ-V10E-H相机采集羊肉样品400~950 nm的高光谱数据,Image-λ-N17E相机采集羊肉样品900~1 650 nm的高光谱数据。首先,对比分析了S-G平滑、二阶求导、多元散射校正(MSC)、标准正态变换(SNV)等光谱预处理方法在消除噪声影响,提高光谱分别率等方面的能力,选取最佳光谱预处理方法。然后,在第一次MC抽样中,计算所有样本预测误差均值和标准差的平均值,以该平均值的2.5~3倍作为可疑样本阈值,3倍作为异常样本阈值;剔除异常样本,保留并标注可疑样本,进行第二次MC抽样,以样本预测误差均值和标准差的3倍值为阈值进行异常样本二次剔除;对第一次MC抽样中标注可疑样本进行二次检测。最后,对比分析了基于全波长建立的偏最小二乘回归(PLSR)模型和基于回归系数法(RC)提取的特征波长建立的PLSR模型。研究结果表明,所提出的二次迭MC算法可以准确判别可疑样本是否为异常样本,有效优化样本集,为建模提供良好的数据基础。以MSC作为光谱预处理算法基于400~950和900~1 650 nm两段高光谱数据建立PLSR模型的Rp2分别为0.947 2和0.978 3, RMSEP分别为47.789 9和30.590 1 g,优于其他三种光谱预处理算法。另外,基于900~1 650 nm建立的PLSR模型明显优于基于400~950 nm波长样本集建立的模型。通过RC算法选取出羊肉硬度在400~950和900~1 650 nm波长范围的特征波长分别为14个(410, 438, 450, 464, 539, 558, 612, 684, 701, 734, 778, 866, 884和935 nm)和10个(915, 949, 1 085, 1 156, 1 206, 1 262, 1 318, 1 384, 1 542和1 580 nm)。其中,基于900~1 650 nm波长建立的PLSR模型的R■为0.985 0, RMSEP为24.397 0 g,为羊肉硬度预测的最佳模型。结果表明,所提出的融合二次迭代MC算法的PLSR模型可以有效预测羊肉冷藏过程中硬度特性变化趋势,为羊肉品质无损检测相关研究提供参考。
-
单位食品质量与安全北京实验室; 中国农业大学; 动物营养国家重点实验室