摘要

为了解决小批量、多品种工业产品的表面质量检测问题,提出一种基于改进深度度量学习的缺陷检测算法。该算法对VGG16网络模型做改进,更有利于原始图像的隐空间映射。针对产品表面缺陷检测的任务,提出条件三元组损失函数以加强神经网络的拟合能力。同时,在隐空间中进行缺陷判定时,抛弃原始度量学习中基于KNN算法的归类方法,提出基于高斯分布概率的归类模型。在检测新类型产品时,在已训练好的网络模型的基础上,使用新产品的图像数据作为输入对网络进行微调。利用该算法在纽扣缺陷数据集上经K-Fold交叉验证,在只需50个无缺陷样本和50个有缺陷样本的小样本情况下,该算法在不同的查询集上的检测准确率均在90%以上,最高可达99.89%,与传统深度度量学习算法相比,检测准确率提升10%以上。实验结果表明,改进深度度量学习算法可以很好地解决小批量、多品种工业产品的表面缺陷检测问题。