摘要

风功率预测能够为电网规划设计提供一项重要依据,因而研究如何精准进行风功率预测对保证电网的安全稳定运行具有重要意义。针对正则化系数C和核参数λ作为模型参数,对核极限学习机预测模型精度产生影响的问题,提出了运用PSO对核极限学习机进行参数优化的PSO-KELM预测方法。将正则化系数C和核参数λ作为优化对象,利用PSO方法对参数共同优化,建立PSO-KELM风功率预测模型。对3组实测数据进行了实验研究,引入均方根误差、平均绝对误差和相对标准差作为评价指标,结果显示该方法预测误差好于直接应用KELM方法,并进一步将结果与常用的SVM以及PSO-SVM方法进行了比较。结果表明,PSO-KELM方法具有更好的预测精度和稳定性,能够作为提高风功率预测准确性以及风电并网安全性方面的一种科学有效的参考。