摘要

随着分布式电源大规模并网,母线负荷的波动性和不确定性日益增加,给母线负荷预测带来新的挑战。传统的点预测方法难以对母线负荷的不确定性进行描述,为此提出一种基于卷积神经网络和门控循环神经网络分位数回归的概率密度预测方法。该方法通过卷积神经网络提取反映母线负荷动态变化的高阶特征,门控循环神经网络基于提取的高阶特征、天气、日类型等因素进行分位数回归建模,预测未来任意时刻不同分位数条件下的母线负荷值,最后利用核密度估计得到母线负荷概率密度曲线。以江苏省某市220 kV母线负荷数据进行测试,结果表明本文所提方法能够有效刻画未来母线负荷的概率分布,为配电网安全运行提供更多的决策信息。