摘要
针对Q-learning算法求解风电抽蓄联合系统日随机优化调度中,存在功率偏差大及收敛速度慢的问题,提出基于n步Q-learning算法的风电抽蓄日随机优化调度方法。先将风电出力随机过程视为Markov过程并建立风电抽蓄日随机优化调度模型;其次分析n步Q-learning算法应用于优化调度模型中的优势;最后按照应用流程求解优化调度模型。算例表明,n步Q-learning算法的优化结果与n步和学习率取值有关,当两个参数取值适中时能得到最优功率偏差结果,在求解该问题上对比n步Q-learning与Q-learning算法,前者能更快收敛且较后者功率偏差降低7.4%、求解时间降低10.4%,验证了n步Q-learning算法的求解优越性。
- 单位