基于优化的ICNet高分遥感影像城市建成区分类

作者:夏国静; 黄凯; 郑庆雅; 夏萍*; 田波; 周婷; 牛鑫鑫
来源:安徽农业大学学报, 2023, 50(02): 303-309.
DOI:10.13610/j.cnki.1672-352x.20230511.001

摘要

城市建成区是一类具有大面积的组合型目标群体,该区域地物丰富,光谱特征复杂多变,且具有大量的同物异谱与地物像素单元交错等现象,影像分类难度显著增加。针对图像级联网络(image cascade network,ICNet)计算复杂、分类精度低的问题,采用优化的ICNet对高分辨率遥感影像城市建城区地物分类进行研究,通过添加高效通道注意力机制(efficient channel attention,ECA)和联合金字塔上采样模块(joint pyramid upsampling,JPU)替换空洞卷积来获得ICNet改进网络,采用总体分类精度(overallaccuracy,OA)、Kappa系数与F13个指标对分类结果进行精度评估,并与随机森林(random forest,RF)、ENet和ICNet3种方法进行对比分析。结果表明,优化的ICNet网络模型能够更准确的进行地物分类,总体分类精度为75.12%,相较于其他分类方法分别提高16.56%、10.48%和4.81%。后用开源数据集进一步验证了优化模型的有效性,说明优化的ICNet网络可用于城市建成区的分类研究。

全文