摘要
目前,自动语音识别(ASR)系统在实验室环境下获得了较高的识别率,但是在实际环境中,由于受到背景噪声和传输信道的影响,系统的识别性能急剧恶化。本文以听觉试验为基础,提出一种新的独立子带并行最大后验概率的非线性类估计算法,用以提高识别系统的鲁棒性。本算法利用多种噪声和识别内容功率谱差异,以及噪声在不同频带上对HMM影响的不同,采用多层感知机(MLP)对噪声环境下最大后验概率进行非线性映射,以减少识别系统由于环境不匹配而导致的识别性能下降。实验表明:该算法性能明显优于最大后验线性回归算法和Sangita提出的子带语音识别算法。
- 单位