本文给出了有关同调光滑连通上链微分分次(简称DG)代数的两个重要结论.具体地说,当A是同调光滑连通上链DG代数且其同调分次代数H(A)是诺特分次代数时,证明Dfg(A)中的任意Koszul DG A-模都是紧致的.另外,当A是Kozul连通上链DG代数且其同调分次代数H(A)是有平衡对偶复形的诺特分次代数时,证明A的同调光滑性质等价于Dfg(A)=Dc(A).