基于改进MobileNetV2的柑橘害虫分类识别方法

作者:张鹏程; 余勇华; 陈传武; 郑文燕; 李善军*
来源:华中农业大学学报, 2023, 42(03): 161-168.
DOI:10.13300/j.cnki.hnlkxb.2023.03.019

摘要

为提高柑橘害虫识别精准度和防治效果,本研究构建包含10类对柑橘危害程度较重的害虫图像数据集,基于神经网络MobileNetV2与注意力机制ECA开发轻量化且高识别精度的ECA_MobileNetV2模型,并基于该模型开发一款边缘计算App。将ECA注意力机制嵌入MobileNetV2网络的反残差结构尾部,以增强原网络的跨通道信息交互能力,提升原网络的特征提取能力。测试结果显示,ECA_MobileNetV2模型对柑橘害虫的分类准确率达到93.63%,相比于MobileNetV2、GoogLeNet和ResNet18模型分别提高了1.68、1.44和2.40个百分点,而模型参数量、浮点运算数和模型大小分别为3.50×106、328.06×106和8.72 MB,复杂度仅略高于MobileNetV2,可以在手机上以边缘计算的形式运行。研究结果表明,本研究开发的智能识别工具能够对不同种类的柑橘害虫进行快速、有效的分类识别。