摘要

针对集成学习参数众多,缺乏高效准确的参数寻优方法的问题,文章提出了基于贝叶斯优化随机森林(RF)的变压器故障诊断方法。该方法采用了多个决策树构成RF故障诊断模型,然后将高斯过程(GP)作为概率代理模型、提升策略(PI)作为采集函数,构建贝叶斯优化(BO)算法,进行RF模型参数寻优。此外,还对支持向量机(SVM)和K最近邻(KNN)两种模型进行贝叶斯优化并对比。在RF模型上,将贝叶斯优化与随机搜索优化进行性能对比。实验结果表明:RF模型经贝叶斯参数寻优后,诊断准确率有明显提高;与随机搜索优化方法相比,贝叶斯优化搜索的模型参数更优,寻优效率更高。