摘要
提出了基于深度信念网络的多品种生殖生育期水稻生物量无损检测方法。对在正常生长及干旱胁迫两个不同环境下的483个水稻品种,分别于胁迫前、胁迫后和复水后3个时间点进行图像采集。利用HSL颜色空间固定阈值分割法分割图像,并对处理后的图像进行特征提取,共提取57个特征值。对数据进行归一化处理后,构建基于深度信念网络的水稻生物量模型,根据决定系数R2、平均相对误差(MAPE)及相对误差绝对值的标准差(SAPE)选择最优模型,并与逐步线性回归模型进行比较。结果表明,基于深度信念网络的生物量测量模型性能更优,R2为0. 929 9,MAPE为11. 19%,SAPE为18. 36%。本研究提供了一种精度高且适用于多品种、不同生殖生育期、不同生长环境的水稻生物量无损检测模型,为水稻研究提供了新的测量工具。
-
单位作物遗传改良国家重点实验室; 华中农业大学