摘要

为深入挖掘驾驶人因素与交通事故之间的关系,提出了一种基于SMOTENC和极端梯度提升(extreme gradient boosting, XGBoost)的驾驶人交通状态优劣分类算法。首先针对交通事故发生与否不平衡的特点,使用SMOTENC算法对数据进行上采样并在采样过程中加入随机扰动,解决了数据不平衡问题。然后使用Embedded算法结合L1正则化,通过模型评估完成对特征子集的选择。最后使用机器学习的方法将XGBoost算法用于执行数据的特征提取和分类过程。实验表明,在对驾驶人的交通状态进行综合评价的任务上,XGBoost模型的准确率为99.85%,相较于随机森林、支持向量机等对照组模型,提升了1.12%~1.80%。除此之外,使用SMOTENC算法对数据不平衡问题进行处理后,通过混淆矩阵观察到模型对于好坏个体均具备较好的识别能力。