基于SVM SMOTE的电力变压器故障样本均衡化方法

作者:刘云鹏; 和家慧*; 许自强; 王权; 李哲; 高树国
来源:高电压技术, 2020, 46(07): 2522-2529.
DOI:10.13336/j.1003-6520.hve.20200310008

摘要

在变压器故障诊断领域,数据集不平衡性带来的极端值、噪声等问题严重影响了分类算法的故障识别能力。为此,提出了一种基于支持向量机(supportvectormachine,SVM)合成少数类过采样(syntheticminority over-samplingtechnique,SMOTE)算法的电力变压器故障样本均衡化方法,并结合机器学习进行故障诊断,以解决不平衡数据集下变压器故障诊断整体精度低的问题。首先,从原理、特点、应用等方面对传统SMOTE算法和SVM SMOTE算法进行了大量研究和分析;然后,以变压器油中溶解气体为样本集,构建了基于故障样本均衡化的变压器故障诊断模型;最后,对所提方法进行了算例仿真。结果显示:相较于传统变压器故障诊断算法,采用SVMSMOTE算法对故障样本进行均衡化后,各评价指标均有大幅提升,其中整体分类准确度αmacro-F1提升了18.9%。研究结果证明所提方法可以有效解决不平衡数据集下变压器故障样本漏判率高的问题,并在其分类上具有更高的精度。

全文