摘要
针对麻雀搜索算法在迭代后期种群多样性减弱、易于陷入局部最优等问题,提出了一种基于等级制度和布朗运动的混沌麻雀搜索算法(CSSA-HB)。首先引入混沌映射调整麻雀搜索算法关键参数;其次引入等级制度,利用父代种群中3个最优个体对警戒者进行位置更新,加强个体间交流,增强种群多样性;然后利用布朗运动可控均匀步长,增强算法的探索能力;当算法陷入停滞时,利用布朗运动策略对个体施加扰动,促使算法跳出局部最优;最后利用贪婪策略保留优势个体,有效加快收敛速度。对12个测试函数进行仿真实验,结果表明混沌映射能有效增强算法性能,迭代映射表现最佳;改进算法具有较强的局部最优规避能力、更快的收敛速度和更高的收敛精度。
-
单位空军工程大学