摘要

车载LiDAR点云中包含地面、建筑物、行道树、路灯等丰富地物类别,自动对这些不同类别点云进行分类,对点云中目标的识别、提取及重建都具有重要意义。本文提出了一种基于Gradient Boosting的自动分类方法。该方法首先对车载激光点云进行数据预处理,然后计算点云的协方差矩阵、密度比、高程相关特征、局部平面特征、投影特征等,再计算点云特征直方图与垂直分布直方图,采用K-means方法对这两者分别进行聚类,并将其聚类类别值也作为特征,从而构建出20维的点云特征向量,应用Gradient Boosting分类方法进行自动分类。为了验证本文方法的有效性,从某城镇场景的车载激光点云数据中选取部分代表区域共144W点作为训练数据集,然后选取另一较大区域的点云共312W点作为测试数据集。使用训练好的分类器对测试数据集进行分类,分类结果总体准确率达到了93.38%,耗时631s,说明此分类方法具有较高的分类准确率,同时也具备较高的效率。

  • 单位
    武汉大学测绘遥感信息工程国家重点实验室