摘要
目的 由于舌色标注样本中常常包含有错误标签,这些噪声样本会导致舌色分类性能不高、模型泛化能力差等问题。因此,需要建立自动舌色分类模型,提升有噪标注样本下舌色分类的准确率,促进中医(TCM)舌诊客观化研究。方法 从中医舌色分类的特点出发,提出了一种基于区域注意力机制的有噪样本下中医舌色分类方法。本方法的创新性包括两点:一方面,根据中医医生舌诊的习惯,提出了一种区域注意力机制,增强网络对于舌尖和舌两侧等舌色区域的特征提取能力,而抑制其他区域的特征;另一方面,针对噪声标注样本下的分类网络训练问题,设计了一种对称修正的交叉熵损失函数,用于对舌色分类网络进行优化训练,抑制噪声样本对分类性能的影响。结果 在3个自建中医舌色分类数据集上的分类结果显示,准确率分别达到了94.96%、93.36%和93.92%,mAP分别达到了94.53%、93.05%和93.38%,Macro-F1分别达到了94.67%、93.16%和92.43%。结论 设计的舌色分类方法能以较低的模型复杂度,显著提升分类精度,提升有噪声样本标注情况下的分类鲁棒性。
-
单位北京工业大学; 中国中医科学院望京医院