摘要
为了提高强化学习的控制性能,提出一种基于分数梯度下降RBF神经网络的强化学习算法.通过评价神经网络和执行神经网络组成强化学习系统,利用神经网络记忆和联想,学会控制倒立摆,提高控制精度,使误差趋于零,直至学习成功,并证明闭环系统的稳定性.通过倒立摆的物理实验发现,当分数阶阶数较大,微分的作用更显著,对角速度和速度的控制效果更好,角速度和速度的均方误差和平均绝对误差较小;当分数阶阶数较小,积分的作用更显著,对倾斜角和位移的控制效果更好,因此倾斜角和位移的均方误差和平均绝对误差较小.仿真实验的结果表明,所提算法动态响应好,超调量小,调整时间短,精度高,泛化性能好.它优于基于RBF神经网络的强化学习算法和传统强化学习算法,能有效地加快梯度下降法的收敛速度,提高其控制性能.在引入适当的干扰后,所提算法能够快速地自我调节并恢复稳定状态,控制器的鲁棒性和动态性能满足实际要求.
- 单位