摘要

基于Mindlin板理论,采用改进傅立叶级数的方法对任意弹性边界条件和耦合条件下的耦合板进行了振动分析。为建立通用的结构模型,在耦合板结构的耦合边上均匀布置六种类型线性约束弹簧模拟耦合条件,在非耦合边上布置五种类型的线性约束弹簧模拟边界条件。耦合板结构的弯曲振动位移函数和面内振动位移函数表示为标准的二维傅立叶余弦级数和辅助级数的线性组合,通过辅助级数的引入,解决了位移导数在边界不连续的问题。利用Hamilton原理建立求解方程,推导出中厚耦合板结构的振动控制方程的矩阵表达式,通过求解矩阵方程可以得到耦合板结构的固有频率和响应。通过数值仿真分析计算,并与有限元结果和实验进行比较,验证了该方法的准确性。