基于流形学习的网络数据流异常检测

作者:唐斯琪; 潘志松
来源:济南大学学报(自然科学版), 2017, 31(02): 118-128.
DOI:10.13349/j.cnki.jdxbn.20170110.005

摘要

将非线性流形学习应用于网络数据流的降维过程,基于局部保持投影(LPP)算法基本思想,提出基于类别信息的监督判别LPP(SDLPP)算法;与传统线性降维算法和传统流形学习算法的结果进行对比,以验证算法的准确性与稳定性;建立基于SDLPP算法的网络数据流异常检测系统实施模型。结果表明:SDLPP算法通过多目标优化,在保证局部保持投影同时实现类间距离最大与类内距离最小,在挖掘低维特征空间嵌入的同时提高了分类效果;非线性的流形学习算法能有效挖掘高维数据中的低维流形,保证了维数约减过程中的非线性结构;SDLPP算法能够生成显式投影映射,泛化性较好,时间复杂度低,更加适合网络数据流实时监测系统,并可应用于实际的网络数据流入侵检测模型。

  • 单位
    中国人民解放军理工大学

全文