摘要

针对传统扩展目标跟踪(Extended Target Tracking, ETT)算法在处理近邻目标时面临的计算效率低下和跟踪不准确的问题,提出了一种形态匹配聚类量测集划分与高斯逆威沙特概率假设密度(Gaussian Inverse Wishart Probability Hypothesis Density, GIW-PHD)滤波器相结合的跟踪处理方法。该方法首先由GIW-PHD滤波器得到预测的目标状态,其次使用DBSCAN(Density-Based Spatial Clustering of Applications with Noise, DBSCAN)算法完成量测集的初步划分,在此基础上利用较高权重的预测分量实现对多个近邻目标混合量测簇的判断,进而使用椭圆形状约束(Elliptic Shape Constraint, ESC)的FCM(Fuzzy C-Means, FCM)算法(ESC-FCM)对混合簇进行二次划分得到更精确的划分结果,最后将划分结果合并后送入GIW-PHD滤波器完成目标状态的更新。仿真结果表明,本文所提量测集划分方法能够充分利用GIW-PHD滤波器预测步获取的目标位置、形态等信息完成混合量测簇的准确划分,从而实现对近邻扩展目标运动学状态和扩展形态的快速、高精度估计。