摘要
针对目前民用飞机重着陆事件的识别只能通过飞行员事后上报和维修人员被动检查的问题,提出了一种基于实时监测参数的民用飞机重着陆预警方法;分析了飞机重着陆的影响因素,在对快速存取记录器数据预处理的基础上,采用灰色关联度分析方法,从飞机重着陆相关的52个监测参数中提取了26个特征监测参数;以着陆质量、垂直加速度、垂直下降率和俯仰率等4个重着陆评价参数作为预测参数,26个特征监测参数作为输入,建立了基于长短期记忆网络的飞机重着陆预测模型;采用重着陆案例数据对预测模型进行训练,分析了飞行高度区间、输入输出步长对模型预测精度的影响,进而对模型进行了优化;在案例验证中引入混淆矩阵验证了模型的预测效果。研究结果表明:利用长短期记忆网络所建立的民用飞机重着陆预警方法有效利用了实时监测参数中反映重着陆趋势的信息,实现了飞机的重着陆预警,在提前8 s预警的情况下,预测精度达到了98%,平均绝对误差仅为0.018 3,可为飞行员提供足够的时间裕度采取措施,避免重着陆的发生。
-
单位中国商飞上海飞机客户服务有限公司; 南京航空航天大学