摘要
为提高图像识别的准确率和速度,结合遗传算法和BP神经网络设计了一种改进图像识别算法。由于传统BP神经网络本身存在结构参数不确定、收敛速率低、容易陷入局部最小值等问题。本文首先提取图像的颜色和纹理特征,利用BP神经网络实现特征的初步识别同时基于遗传算法在线优化BP神经网络结构参数。在此基础上,给出了图像识别流程。最后,根据证据理论实现图像识别结果融合以获得完整图像信息。仿真结果表明:所述算法具有较高的识别率和收敛速度;在少量训练样本条件下,改进BP神经网络依旧具有较好的泛化能力。
-
单位吉林化工学院