摘要

为了减小目标跟踪中目标变形、光照影响、运动模糊以及目标旋转对跟踪效果的影响,在相关滤波KCF基础上,提出了一种基于自适应特征融合的多尺度相关滤波跟踪算法。首先,提取VGG19网络中conv2-2、conv3-4、conv5-4层的特征以及CN特征,并在conv2-2层加入CN特征;然后,将这3个特征分别代替HOG特征进行滤波学习,得到3幅响应图;进而对3幅响应图进行加权融合预测目标位置。最后,在尺度方面引入多尺度相关滤波器进行尺度的确定。该算法比KCF跟踪算法精确度和成功率分别提高了13.6%和11.8%。与现有的其他优异跟踪算法相比,该算法在应对运动模糊、背景杂乱、目标变形、平面旋转方面更具有较好的跟踪效果。