摘要
支持向量机(support vector machine,SVM)是一种基于核的机器学习方法,不同的核函数对SVM的性能影响显著,如何针对具体问题获得一种有效的核函数选择方法成为SVM研究领域的一个重要问题。目前核函数选取仍是一个开放性的问题,存在着一系列的偶然性和局限性。而针对相对复杂问题时,使用何种类型的单一基核函数难以反映出其分布特征。因此,提出一种基于分形理论的核函数选择方法,在考虑不同核函数度量特征的同时,结合具体问题样本分布特征合理构造或选择核函数类型,并通过数据仿真以及相似性对比验证了算法的合理性。
-
单位江西理工大学; 自动化学院