摘要

为了提高海上风速预测的精度,提出了一种基于局部加权回归的周期趋势分解(STL)改进的季节性差分自回归移动平均模型(SARIMA)和长短时记忆(LSTM)神经网络的海上风速预测方法。首先通过STL分解原始风速时间序列,提高SARIMA模型季节性差分步长的准确性,再使用SARIMA模型对观测的风速序列数据进行预测,得到预测值以及预测值与观测值之间的残差;然后用残差样本集训练长短时记忆神经网络并对残差进行预测;最后将两部分得到的预测值求和得到风速序列的预测值。选定3个不同地点分别进行仿真实验并与改进前方法进行比较,结果表明改进后模型的预测精度更高,误差更小。