摘要

针对加密会话初始协议(SIP)识别困难以及相关研究工作较少,对入侵检测、网络流量监控等工作带来不便的问题,提出基于主成分分析(PCA)和学习矢量量化(LVQ)网络的SIP协议识别模型。通过对SIP协议的网络流特征进行PCA,提取出累计贡献率高于85%的相关流特征作为SIP协议识别过程中的主要特征,并进行LVQ网络训练,构建出完整的SIP协议识别模型。实验结果表明,PCALVQ模型对SIP协议的识别率均高于90%,通过PCA提取的SIP协议网络流属性区别于非SIP协议的属性,该模型对SIP协议的识别效果较好。

  • 单位
    中国人民解放军陆军工程大学